Luteinizing hormone-releasing hormone (LHRH) neurons maintained in hypothalamic slice explant cultures exhibit a rapid LHRH mRNA turnover rate.
نویسندگان
چکیده
Evidence indicates that neuropeptide gene expression is tightly coupled to biosynthesis and secretion. Moreover, rhythmic gene expression often accompanies rhythmic secretion. Luteinizing hormone-releasing hormone (LHRH) neurosecretion, which regulates gonadal function, is pulsatile, with interpulse intervals of approximately 1 hr and pulse decays of <30 min in rats. As a basis for a rapid fall in peptide secretion, we hypothesize that LHRH mRNA levels rapidly decay. To address this hypothesis, we examined LHRH mRNA turnover in primary postnatal LHRH neurons maintained in long-term hypothalamic/preoptic area slice explant cultures, using in situ hybridization histochemistry (ISHH). Relative LHRH mRNA content per cell was quantitated by single-cell analysis after transcription inhibition with 5, 6-dichloro-1-D-ribofuranosyl-benzimidazole (DRB) or actinomycin D. Cultures were maintained in serum-free medium with tetrodotoxin to suppress spontaneous electrical activity and hence assess only intrinsic cellular activity. A plot of LHRH mRNA level per cell versus DRB treatment time showed a rapid initial decay of LHRH mRNA (t1/2, 5-13 min), followed by a slower decay rate (t1/2, 329-344 hr). LHRH cell number after drug treatment as determined by immunocytochemistry did not change. Comparison of mammalian LHRH mRNA 3'-untranslated regions showed two conserved regions. These data indicate that, in primary LHRH neurons, LHRH mRNA has an intrinsically high rate of turnover and a mRNA stabilization component. Foremost, decay of LHRH mRNA, the fastest reported for a neuropeptide to date, corresponds to the decay of LHRH peptide pulses.
منابع مشابه
A ligand-specific action of chelated copper on hypothalamic neurons: stimulation of the release of luteinizing hormone-releasing hormone from median eminence explants.
We have previously shown that chelated copper stimulates the release of luteinizing hormone-releasing hormone (LHRH) from isolated hypothalamic granules. In this study, we wished to ascertain if chelated copper acts on hypothalamic neurons to stimulate LHRH release and, if so, what is the ligand specificity of this interaction. An in vitro system of explants of the median eminence area (MEA) wa...
متن کاملEstradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-to-neuron signaling pathway.
Prostaglandin E2 (PGE2) mediates the stimulatory effect of norepinephrine (NE) on the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling reproductive function. In rodents, this facilitatory effect requires previous exposure to estradiol, suggesting that the steroid affects downstream components in the cascade that leads to PGE2-induced LHRH release. Because ...
متن کاملLuteinizing hormone-releasing hormone neurons express Fos protein during the proestrous surge of luteinizing hormone.
The ability of luteinizing hormone-releasing hormone (LHRH) neurons to express the oncogene c-fos was examined during the estrous cycle in rats. The immunocytochemical localization of the c-fos-encoded antigen, Fos, was coupled with the immunocytochemical localization of LHRH. LHRH neurons showed no Fos immunoreactivity during diestrus-1, diestrus-2, estrus, or the morning of proestrus. However...
متن کاملGonadotropin-releasing hormone neurons in the preoptic-hypothalamic region of the rat contain lamprey gonadotropin-releasing hormone III, mammalian luteinizing hormone-releasing hormone, or both peptides.
This study utilized a newly developed antiserum, specific for lamprey gonadotropin-releasing hormone III (l-GnRH-III), to determine the following: in which regions of the rat hypothalamus the neuronal perikarya producing l-GnRH-III are localized; and whether this peptide, known to selectively induce follicle-stimulating hormone release, is coexpressed in neurons containing mammalian luteinizing...
متن کاملComparison of mechanisms of action of luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix and LHRH agonist triptorelin on the gene expression of pituitary LHRH receptors in rats.
The mechanisms through which luteinizing hormone (LH)-releasing hormone (LHRH) antagonists suppress pituitary gonadotroph functions and LHRH-receptor (LHRH-R) expression are incompletely understood. Consequently, we investigated the direct effect of LHRH antagonist cetrorelix in vitro on the expression of the pituitary LHRH-R gene and its ability to counteract the exogenous LHRH and the agonist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 24 شماره
صفحات -
تاریخ انتشار 1997